
Peddle the Pedal to the Metal

Howard Chu
CTO, Symas Corp. hyc@symas.com

Chief Architect, OpenLDAP hyc@openldap.org
2019-08-31

mailto:hyc@symas.com
mailto:hyc@openldap.org

2

Overview

● Context, philosophy, impact
● Profiling tools
● Obvious problems and effective solutions
● More problems, more tools
● When incremental improvement isn’t enough

3

Tips, Tricks, Tools & Techniques
● Real world experience accelerating an existing

codebase over 100x
– From 60ms per op to 0.6ms per op
– All in portable C, no asm or other non-portable

tricks

4

Search Performance

5

Mechanical Sympathy

● “By understanding a machine-oriented
language, the programmer will tend to use a
much more efficient method; it is much closer to
reality.”
– Donald Knuth The Art of Computer Programming

1967

6

Optimization

● “We should forget about small efficiencies, say
about 97% of the time: premature optimization
is the root of all evil. Yet we should not pass up
our opportunities in that critical 3%.”
– Donald Knuth “Computer Programming as an Art”

1974

7

Optimization

● The decisions differ greatly between refactoring
an existing codebase, and starting a new
project from scratch
– But even with new code, there’s established

knowledge that can’t be ignored.
● e.g. it’s not premature to choose to avoid BubbleSort
● Planning ahead will save a lot of actual coding

8

Optimization

● Eventually you reach a limit, where a
time/space tradeoff is required
– But most existing code is nowhere near that limit

● Some cases are clear, no tradeoffs to make
– E.g. there’s no clever way to chop up or reorganize

an array of numbers before summing them up
● Eventually you must visit and add each number in the

array
● Simplicity is best

9

Summing

int i, sum;

for (i=1, sum=A[0]; i<8; sum+=A[i], i++);

A[0] A[1]A[0] + A[2]+ A[3]+ A[4]+ A[5]+ A[6]+ A[7]+

10

Summing

int i, j, sum=0;

for (i=0; i<5; i+= 4) {

 for (j=0; j<3; j+=2) a[i+j] += a[i+j+1];

 a[i] += a[i+2];

 sum += a[i];

}

A[0] A[1]A[0] + A[2] A[3]+ A[4] A[5]+ A[6] A[7]+

A[01] A[23] A[45] A[67]+ +

A[0123] A[4567]+

11

Optimization

● Correctness first
– It’s easier to make correct code fast, than vice versa

● Try to get it right the first time around
– If you don’t have time to do it right, when will you ever

have time to come back and fix it?
● Computers are supposed to be fast

– Even if you get the right answer, if you get it too late,
your code is broken

12

Tools

● Profile! Always measure first
– Many possible approaches, each has different strengths

● Linux perf (formerly called oprofile)
– Easiest to use, time-based samples
– Generated call graphs can miss important details

● FunctionCheck
– Compiler-based instrumentation, requires explicit compile
– Accurate call graphs, noticeable performance impact

● Valgrind callgrind
– Greatest detail, instruction-level profiles
– Slowest to execute, hundreds of times slower than normal

13

Profiling

● Using `perf` in a first pass is fairly painless and
will show you the worst offenders
– We found in UMich LDAP 3.3, 55% of execution

time was spent in malloc/free. Another 40% in
strlen, strcat, strcpy

– You’ll never know how (bad) things are until you
look

14

Profiling

● As noted, `perf` can miss details and usually
doesn’t give very useful call graphs
– Knowing the call tree is vital to fixing the hot spots
– This is where other tools like FunctionCheck and

valgrind/callgrind are useful

15

Insights

● “Don’t Repeat Yourself” as a concept applies
universally
– Don’t recompute the same thing multiple times in

rapid succession
● Don’t throw away useful information if you’ll need it again

soon. If the information is used frequently and expensive
to compute, remember it

● Corollary: don’t cache static data that’s easy to re-fetch

16

String Mangling

● The code was doing a lot of redundant string
parsing/reassembling
– 25% of time in strlen() on data received over the

wire
● Totally unnecessary since all LDAP data is BER-

encoded, with explicit lengths
● Use struct bervals everywhere, which carries a string

pointer and an explicit length value
● Eliminated strlen() from runtime profiles

17

String Mangling

● Reassembling string components with strcat()
– Wasteful, Schlemiel the Painter problem

● https://en.wikipedia.org/wiki/
Joel_Spolsky#Schlemiel_the_Painter%27s_algorithm

● strcat() always starts from beginning of string, gets
slower the more it’s used

– Fixed by using our own strcopy() function, which
returns pointer to end of string.

● Modern equivalent is stpcpy().

18

String Mangling

● Safety note – safe strcpy/strcat:
char *stecpy(char *dst, const char *src, const char *end)
{

while (*src && dst < end)
*dst++ = *src++;

if (dst < end)
*dst = '\0';

return dst;
}

main() {
char buf[64];
char *ptr, *end = buf+sizeof(buf);

ptr = stecpy(buf, "hello", end);
ptr = stecpy(ptr, " world", end);

}

19

String Mangling

● stecpy()
– Immune to buffer overflows
– Convenient to use, no repetitive recalculation of

remaining buffer space required
– Returns pointer to end of copy, allows fast

concatenation of strings
– You should adopt this everywhere

20

String Mangling

● Conclusion
– If you’re doing a lot of string handling, you probably

need to use something like struct bervals in your
code

struct berval {
size_t len;
char *val;

}

– You should avoid using the standard C string library

21

Malloc Mischief

● Most people’s first impulse on seeing “we’re
spending a lot of time in malloc” is to switch to
an “optimized” library like jemalloc or tcmalloc
– Don’t do it. Not as a first resort. You’ll only net a 10-

20% improvement at most.
– Examine the profile callgraph; see how it’s actually

being used

22

Malloc Mischief

● Most of the malloc use was in functions looking
like

datum *foo(param1, param2, etc…) {
datum *result = malloc(sizeof(datum));

result->bar = blah blah…

return result;

}

23

Malloc Mischief

● Easily eliminated by having the caller provide
the datum structure, usually on its own stack

void foo(datum *ret, param1, param2, etc…)

{

ret->bar = blah blah...

}

24

Malloc Mischief

● Avoid C++ style constructor patterns
– Callers should always pass data containers in
– Callees should just fill in necessary fields

● This eliminated about half of our malloc use
– That brings us to the end of the easy wins
– Our execution time accelerated from 60ms/op to

15ms/op

25

Malloc Mischief

● More bad usage patterns:
– Building an item incrementally, using realloc

● Another Schlemiel the Painter problem

– Instead, count the sizes of all elements first, and
allocate the necessary space once

26

Malloc Mischief

● Parsing incoming requests
– Messages include length in prefix
– Read entire message into a single buffer before parsing
– Parse individual fields into data structures

● Code was allocating containers for fields as well as
memory for copies of fields

● Changed to set values to point into original read buffer
● Avoid unneeded mallocs and memcpys

27

Malloc Mischief

● If your processing has self-contained units of
work, use a per-unit arena with your own
custom allocator instead of the heap
– Advantages:

● No need to call free() at all
● Can avoid any global heap mutex contention

– Basically the Mark/Release memory management
model of Pascal

28

Malloc Mischief

● Consider preallocating a number of commonly
used structures during startup, to avoid cost of
malloc at runtime
– But be careful to avoid creating a mutex bottleneck

around usage of the preallocated items
● Using these techniques, we moved malloc from

#1 in profile to … not even the top 100.

29

Malloc Mischief

● If you make some mistakes along the way you
might encounter memory leaks

● FunctionCheck and valgrind can trace these but
they’re both quite slow

● Use github.com/hyc/mleak – fastest memory
leak tracer

30

Uncharted Territory

● After eliminating the worst profile hotspots, you
may be left with a profile that’s fairly flat, with no
hotspots
– If your system performance is good enough now,

great, you’re done
– If not, you’re going to need to do some deep

thinking about how to move forward
– A lot of overheads won’t show up in any profile

31

Threading Cost

● Threads, aka Lightweight Processes
– The promise was that they would be cheap, spawn

as many as you like, whenever
– (But then again, the promise of Unix was that

processes would be cheap, etc…)
– In reality: startup and teardown costs add up

● Don’t repeat yourself: don’t incur the cost of startup and
teardown repeatedly

32

Threading Cost

● Use a threadpool
– Cost of thread API overhead is generally not visible

in profiles
– Measured throughput improvement of switching to

threadpool was around 15%

33

Function Cost

● A common pattern involves a Debug function:

Debug(level, message) {

if (!(level & debug_level))

 return;

…

}

34

Function Cost

● For functions like this that are called frequently
but seldom do any work, the call overhead is
significant

● Replace with a DEBUG() macro
– Move the debug_level test into the macro, avoid

function call if the message would be skipped

35

Function Cost

● We also had functions with huge signatures,
passing many parameters around

● This is both a correctness and efficiency issue
● “If you have a procedure with 10 parameters,

you probably missed some.”
– Alan Perlis Epigrams on Programming 1982

36

Function Cost

● Nested calls of functions with long parameter
lists use a lot of time pushing params onto the
stack

● Instead, put all params into a single structure and
pass pointer to this struct as function parameter

● Resulted in 7-8% performance gain
– https://www.openldap.org/lists/openldap-devel/

200304/msg00004.html

37

Data Access Cost

● Shared data structures in a multithreaded
program
– Cost of mutexes to protect accesses
– Hidden cost of misaligned data within shared

structures: “False sharing”
● Only occurs in multiprocessor machines

38

Data Access Cost

● Within a single structure, order elements from
largest to smallest, to minimize padding
overhead

● Within shared tables of structures, align
structures with size of CPU cache line
– Use mmap() or posix_memalign() if necessary

● Use instruction-level tracing and cache hit
counters with perf to see results

39

Data Access Cost

● Use mutrace to measure lock contention
overhead

● Where hotspots appear, try to distribute the
load across multiple locks instead of just one
– E.g. in slapd threadpool, work queue used a single

mutex
– Splitting into 4 queues with 4 mutexes decreased

contention and wait time by a factor of 6.

40

Stepwise Refinement

● Writing optimal code is an iterative process
– When you eliminate one bottleneck, others may

appear that were previously overshadowed
– It may seem like an unending task
– Measure often and keep good notes so you can see

progress being made

41

Burn It All Down

● Sometimes you’ll get stuck, maybe you went
down a dead end

● No amount of incremental improvements will
get the desired result

● If you can identify the remaining problems in
your way, it may be worthwhile to start over with
those problems in mind

42

Burn It All Down

● In OpenLDAP, we’ve used BerkeleyDB since
2000
– Have spent countless hours building a cache above

it because its own performance was too slow
– Numerous bugs along the way related to lock

management/deadlocks
● Realization: if your DB engine is so slow you

need to build your own cache above it, you’ve
got the wrong DB engine

43

Burn It All Down

● We started designing LMDB in 2009 specifically to
avoid the caching and locking issues in BerkeleyDB

● Changing large components like this requires a
good modular internal API to be feasible
– Rewriting the entire world from scratch is usually a

horrible idea, reuse as much as you can that’s worth
saving

– Make sure you actually solve the problems you intend,
make sure those are the actual important problems

44

Burn It All Down

● LMDB uses copy-on-write MVCC, exposes data
via read-only mmap
– Eliminates locks for read operations, readers don’t

block writers, writers don’t block readers
– Eliminates mallocs and memcpy when returning data

from the DB
● There are no blocking calls at all in the read path, reads scale

perfectly linearly across all available CPUs

– DB integrity is 100% crash proof, incorruptible
● Restart after shutdown or crash is instantaneous

45

Review

● Correctness first
– But getting the right answer too late is still wrong

● Fixing inefficiencies is an iterative process
● Multiple tools available, each with different

strengths and weaknesses
● Sometimes you may have to throw a lot out and

start over

46

Conclusion

● Ultimately the idea is to do only what is
necessary and sufficient
– Do what you need to do, and nothing more
– Do what you need, once
– DRY talks about not repeating yourself in source

code; here we mean don’t repeat yourself in
execution

47

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47

