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Overview

● Context, philosophy, impact
● Profiling tools
● Obvious problems and effective solutions
● More problems, more tools
● When incremental improvement isn’t enough
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Tips, Tricks, Tools & Techniques
● Real world experience accelerating an existing 

codebase over 100x
– From 60ms per op to 0.6ms per op
– All in portable C, no asm or other non-portable 

tricks
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Search Performance
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Mechanical Sympathy

● “By understanding a machine-oriented 
language, the programmer will tend to use a 
much more efficient method; it is much closer to 
reality.”
– Donald Knuth The Art of Computer Programming 

1967
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Optimization

● “We should forget about small efficiencies, say 
about 97% of the time: premature optimization 
is the root of all evil. Yet we should not pass up 
our opportunities in that critical 3%.”
– Donald Knuth “Computer Programming as an Art” 

1974
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Optimization

● The decisions differ greatly between refactoring 
an existing codebase, and starting a new 
project from scratch
– But even with new code, there’s established 

knowledge that can’t be ignored.
● e.g. it’s not premature to choose to avoid BubbleSort
● Planning ahead will save a lot of actual coding
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Optimization

● Eventually you reach a limit, where a 
time/space tradeoff is required
– But most existing code is nowhere near that limit

● Some cases are clear, no tradeoffs to make
– E.g. there’s no clever way to chop up or reorganize 

an array of numbers before summing them up
● Eventually you must visit and add each number in the 

array
● Simplicity is best
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Summing

int i, sum;

for (i=1, sum=A[0]; i<8; sum+=A[i], i++);

A[0] A[1]A[0] + A[2]+ A[3]+ A[4]+ A[5]+ A[6]+ A[7]+
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Summing

int i, j, sum=0;

for (i=0; i<5; i+= 4) {

  for (j=0; j<3; j+=2) a[i+j] += a[i+j+1];

  a[i] += a[i+2];

  sum += a[i];

}

A[0] A[1]A[0] + A[2] A[3]+ A[4] A[5]+ A[6] A[7]+

A[01] A[23] A[45] A[67]+ +

A[0123] A[4567]+
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Optimization

● Correctness first
– It’s easier to make correct code fast, than vice versa

● Try to get it right the first time around
– If you don’t have time to do it right, when will you ever 

have time to come back and fix it?
● Computers are supposed to be fast

– Even if you get the right answer, if you get it too late, 
your code is broken
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Tools

● Profile! Always measure first
– Many possible approaches, each has different strengths

● Linux perf (formerly called oprofile)
– Easiest to use, time-based samples
– Generated call graphs can miss important details

● FunctionCheck
– Compiler-based instrumentation, requires explicit compile
– Accurate call graphs, noticeable performance impact

● Valgrind callgrind
– Greatest detail, instruction-level profiles
– Slowest to execute, hundreds of times slower than normal
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Profiling

● Using `perf` in a first pass is fairly painless and 
will show you the worst offenders
– We found in UMich LDAP 3.3, 55% of execution 

time was spent in malloc/free. Another 40% in 
strlen, strcat, strcpy

– You’ll never know how (bad) things are until you 
look
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Profiling

● As noted, `perf` can miss details and usually 
doesn’t give very useful call graphs
– Knowing the call tree is vital to fixing the hot spots
– This is where other tools like FunctionCheck and 

valgrind/callgrind are useful
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Insights

● “Don’t Repeat Yourself” as a concept applies 
universally
– Don’t recompute the same thing multiple times in 

rapid succession
● Don’t throw away useful information if you’ll need it again 

soon. If the information is used frequently and expensive 
to compute, remember it

● Corollary: don’t cache static data that’s easy to re-fetch
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String Mangling

● The code was doing a lot of redundant string 
parsing/reassembling
– 25% of time in strlen() on data received over the 

wire
● Totally unnecessary since all LDAP data is BER-

encoded, with explicit lengths
● Use struct bervals everywhere, which carries a string 

pointer and an explicit length value
● Eliminated strlen() from runtime profiles
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String Mangling

● Reassembling string components with strcat()
– Wasteful, Schlemiel the Painter problem

● https://en.wikipedia.org/wiki/
Joel_Spolsky#Schlemiel_the_Painter%27s_algorithm

● strcat() always starts from beginning of string, gets 
slower the more it’s used

– Fixed by using our own strcopy() function, which 
returns pointer to end of string. 

● Modern equivalent is stpcpy().
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String Mangling

● Safety note – safe strcpy/strcat:
char *stecpy(char *dst, const char *src, const char *end)
{

while (*src && dst < end)
*dst++ = *src++;

if (dst < end)
*dst = '\0';

return dst;
}

main() {
char buf[64];
char *ptr, *end = buf+sizeof(buf);

ptr = stecpy(buf, "hello", end);
ptr = stecpy(ptr, " world", end);

}
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String Mangling

● stecpy()
– Immune to buffer overflows
– Convenient to use, no repetitive recalculation of 

remaining buffer space required
– Returns pointer to end of copy, allows fast 

concatenation of strings
– You should adopt this everywhere
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String Mangling

● Conclusion
– If you’re doing a lot of string handling, you probably 

need to use something like struct bervals in your 
code

struct berval {
size_t len;
char *val;

}

– You should avoid using the standard C string library
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Malloc Mischief

● Most people’s first impulse on seeing “we’re 
spending a lot of time in malloc” is to switch to 
an “optimized” library like jemalloc or tcmalloc
– Don’t do it. Not as a first resort. You’ll only net a 10-

20% improvement at most.
– Examine the profile callgraph; see how it’s actually 

being used
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Malloc Mischief

● Most of the malloc use was in functions looking 
like

datum *foo(param1, param2, etc…) {
datum *result = malloc(sizeof(datum));

result->bar = blah blah…

return result;

}
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Malloc Mischief

● Easily eliminated by having the caller provide 
the datum structure, usually on its own stack

void foo(datum *ret, param1, param2, etc…)

{

ret->bar = blah blah...

}
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Malloc Mischief

● Avoid C++ style constructor patterns
– Callers should always pass data containers in
– Callees should just fill in necessary fields

● This eliminated about half of our malloc use
– That brings us to the end of the easy wins
– Our execution time accelerated from 60ms/op to 

15ms/op
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Malloc Mischief

● More bad usage patterns:
– Building an item incrementally, using realloc

● Another Schlemiel the Painter problem

– Instead, count the sizes of all elements first, and 
allocate the necessary space once
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Malloc Mischief

● Parsing incoming requests
– Messages include length in prefix
– Read entire message into a single buffer before parsing
– Parse individual fields into data structures

● Code was allocating containers for fields as well as 
memory for copies of fields

● Changed to set values to point into original read buffer
● Avoid unneeded mallocs and memcpys
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Malloc Mischief

● If your processing has self-contained units of 
work, use a per-unit arena with your own 
custom allocator instead of the heap
– Advantages:

● No need to call free() at all
● Can avoid any global heap mutex contention

– Basically the Mark/Release memory management 
model of Pascal
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Malloc Mischief

● Consider preallocating a number of commonly 
used structures during startup, to avoid cost of 
malloc at runtime
– But be careful to avoid creating a mutex bottleneck 

around usage of the preallocated items
● Using these techniques, we moved malloc from 

#1 in profile to … not even the top 100.
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Malloc Mischief

● If you make some mistakes along the way you 
might encounter memory leaks

● FunctionCheck and valgrind can trace these but 
they’re both quite slow

● Use github.com/hyc/mleak – fastest memory 
leak tracer
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Uncharted Territory

● After eliminating the worst profile hotspots, you 
may be left with a profile that’s fairly flat, with no 
hotspots
– If your system performance is good enough now, 

great, you’re done
– If not, you’re going to need to do some deep 

thinking about how to move forward
– A lot of overheads won’t show up in any profile
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Threading Cost

● Threads, aka Lightweight Processes
– The promise was that they would be cheap, spawn 

as many as you like, whenever
– (But then again, the promise of Unix was that 

processes would be cheap, etc…)
– In reality: startup and teardown costs add up

● Don’t repeat yourself: don’t incur the cost of startup and 
teardown repeatedly
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Threading Cost

● Use a threadpool
– Cost of thread API overhead is generally not visible 

in profiles
– Measured throughput improvement of switching to 

threadpool was around 15%
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Function Cost

● A common pattern involves a Debug function:

Debug(level, message) {

if (!( level & debug_level ))

    return;

…

}
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Function Cost

● For functions like this that are called frequently 
but seldom do any work, the call overhead is 
significant

● Replace with a DEBUG() macro
– Move the debug_level test into the macro, avoid 

function call if the message would be skipped
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Function Cost

● We also had functions with huge signatures, 
passing many parameters around

● This is both a correctness and efficiency issue
● “If you have a procedure with 10 parameters, 

you probably missed some.”
– Alan Perlis Epigrams on Programming 1982
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Function Cost

● Nested calls of functions with long parameter 
lists use a lot of time pushing params onto the 
stack

● Instead, put all params into a single structure and 
pass pointer to this struct as function parameter

● Resulted in 7-8% performance gain
– https://www.openldap.org/lists/openldap-devel/

200304/msg00004.html
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Data Access Cost

● Shared data structures in a multithreaded 
program
– Cost of mutexes to protect accesses
– Hidden cost of misaligned data within shared 

structures: “False sharing”
● Only occurs in multiprocessor machines
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Data Access Cost

● Within a single structure, order elements from 
largest to smallest, to minimize padding 
overhead

● Within shared tables of structures, align 
structures with size of CPU cache line
– Use mmap() or posix_memalign() if necessary

● Use instruction-level tracing and cache hit 
counters with perf to see results
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Data Access Cost

● Use mutrace to measure lock contention 
overhead

● Where hotspots appear, try to distribute the 
load across multiple locks instead of just one
– E.g. in slapd threadpool, work queue used a single 

mutex
– Splitting into 4 queues with 4 mutexes decreased 

contention and wait time by a factor of 6.
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Stepwise Refinement

● Writing optimal code is an iterative process
– When you eliminate one bottleneck, others may 

appear that were previously overshadowed
– It may seem like an unending task
– Measure often and keep good notes so you can see 

progress being made
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Burn It All Down

● Sometimes you’ll get stuck, maybe you went 
down a dead end

● No amount of incremental improvements will 
get the desired result

● If you can identify the remaining problems in 
your way, it may be worthwhile to start over with 
those problems in mind
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Burn It All Down

● In OpenLDAP, we’ve used BerkeleyDB since 
2000
– Have spent countless hours building a cache above 

it because its own performance was too slow
– Numerous bugs along the way related to lock 

management/deadlocks
● Realization: if your DB engine is so slow you 

need to build your own cache above it, you’ve 
got the wrong DB engine
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Burn It All Down

● We started designing LMDB in 2009 specifically to 
avoid the caching and locking issues in BerkeleyDB

● Changing large components like this requires a 
good modular internal API to be feasible
– Rewriting the entire world from scratch is usually a 

horrible idea, reuse as much as you can that’s worth 
saving

– Make sure you actually solve the problems you intend, 
make sure those are the actual important problems
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Burn It All Down

● LMDB uses copy-on-write MVCC, exposes data 
via read-only mmap
– Eliminates locks for read operations, readers don’t 

block writers, writers don’t block readers
– Eliminates mallocs and memcpy when returning data 

from the DB
● There are no blocking calls at all in the read path, reads scale 

perfectly linearly across all available CPUs

– DB integrity is 100% crash proof, incorruptible
●  Restart after shutdown or crash is instantaneous
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Review

● Correctness first
– But getting the right answer too late is still wrong

● Fixing inefficiencies is an iterative process
● Multiple tools available, each with different 

strengths and weaknesses
● Sometimes you may have to throw a lot out and 

start over
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Conclusion

● Ultimately the idea is to do only what is 
necessary and sufficient
– Do what you need to do, and nothing more
– Do what you need, once
– DRY talks about not repeating yourself in source 

code; here we mean don’t repeat yourself in 
execution
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